Overview of the Collections Module
The Collections module implements high-performance container datatypes (beyond
the built-in types list, dict and tuple) and contains many useful data structures
that you can use to store information in memory.
This article will be about the Counter object.
Counter
A Counter is a container that tracks how many times equivalent values are added.
It can be used to implement the same algorithms for which other languages commonly
use bag or multiset data structures.
Importing the module
Import collections makes the stuff in collections available as:
collections.something
import collections
Since we are only going to use the Counter, we can simply do this:
from collections import Counter
Initializing
Counter supports three forms of initialization.
Its constructor can be called with a sequence of items (iterable), a dictionary
containing keys and counts (mapping, or using keyword arguments mapping string
names to counts (keyword args).
import collections
print collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])
print collections.Counter({'a':2, 'b':3, 'c':1})
print collections.Counter(a=2, b=3, c=1)
The results of all three forms of initialization are the same.
$ python collections_counter_init.py
Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})
Create and Update Counters
An empty Counter can be constructed with no arguments and populated via the
update() method.
import collections
c = collections.Counter()
print 'Initial :', c
c.update('abcdaab')
print 'Sequence:', c
c.update({'a':1, 'd':5})
print 'Dict :', c
The count values are increased based on the new data, rather than replaced.
In this example, the count for a goes from 3 to 4.
$ python collections_counter_update.py
Initial : Counter()
Sequence: Counter({'a': 3, 'b': 2, 'c': 1, 'd': 1})
Dict : Counter({'d': 6, 'a': 4, 'b': 2, 'c': 1})
Accessing Counters
Once a Counter is populated, its values can be retrieved using the dictionary API.
import collections
c = collections.Counter('abcdaab')
for letter in 'abcde':
print '%s : %d' % (letter, c[letter])
Counter does not raise KeyError for unknown items.
If a value has not been seen in the input (as with e in this example),
its count is 0.
$ python collections_counter_get_values.py
a : 3
b : 2
c : 1
d : 1
e : 0
Elements
The elements() method returns an iterator over elements repeating each as many
times as its count.
Elements are returned in arbitrary order.
import collections
c = collections.Counter('extremely')
c['z'] = 0
print c
print list(c.elements())
The order of elements is not guaranteed, and items with counts less than zero are
not included.
$ python collections_counter_elements.py
Counter({'e': 3, 'm': 1, 'l': 1, 'r': 1, 't': 1, 'y': 1, 'x': 1, 'z': 0})
['e', 'e', 'e', 'm', 'l', 'r', 't', 'y', 'x']
Most_Common
Use most_common() to produce a sequence of the n most frequently encountered
input values and their respective counts.
import collections
c = collections.Counter()
with open('/usr/share/dict/words', 'rt') as f:
for line in f:
c.update(line.rstrip().lower())
print 'Most common:'
for letter, count in c.most_common(3):
print '%s: %7d' % (letter, count)
This example counts the letters appearing in all of the words in the system
dictionary to produce a frequency distribution, then prints the three most common
letters.
Leaving out the argument to most_common() produces a list of all the items,
in order of frequency.
$ python collections_counter_most_common.py
Most common:
e: 234803
i: 200613
a: 198938
Arithmetic
Counter instances support arithmetic and set operations for aggregating results.
import collections
c1 = collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])
c2 = collections.Counter('alphabet')
print 'C1:', c1
print 'C2:', c2
print '
Combined counts:'
print c1 + c2
print '
Subtraction:'
print c1 - c2
print '
Intersection (taking positive minimums):'
print c1 & c2
print '
Union (taking maximums):'
print c1 | c2
Each time a new Counter is produced through an operation, any items with zero or
negative counts are discarded.
The count for a is the same in c1 and c2, so subtraction leaves it at zero.
$ python collections_counter_arithmetic.py
C1: Counter({'b': 3, 'a': 2, 'c': 1})
C2: Counter({'a': 2, 'b': 1, 'e': 1, 'h': 1, 'l': 1, 'p': 1, 't': 1})
#Combined counts:
Counter({'a': 4, 'b': 4, 'c': 1, 'e': 1, 'h': 1, 'l': 1, 'p': 1, 't': 1})
#Subtraction:
Counter({'b': 2, 'c': 1})
#Intersection (taking positive minimums):
Counter({'a': 2, 'b': 1})
#Union (taking maximums):
Counter({'b': 3, 'a': 2, 'c': 1, 'e': 1, 'h': 1, 'l': 1, 'p': 1, 't': 1})
Counting words
Tally occurrences of words in a list.
cnt = Counter()
for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
cnt[word] += 1
print cnt
Counter({'blue': 3, 'red': 2, 'green': 1})
The counter takes an iterable and could also be written like this:
mywords = ['red', 'blue', 'red', 'green', 'blue', 'blue']
cnt = Counter(mywords)
print cnt
Counter({'blue': 3, 'red': 2, 'green': 1})
Find the most common words
Find the ten most common words in Hamlet
import re
words = re.findall('w+', open('hamlet.txt').read().lower())
print Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
Sources
Please don’t forget to read the links below for more information.
http://www.doughellmann.com/PyMOTW/collections/
http://docs.python.org/2/library/collections.html#collections.Counter
Recommended Python Training
Course: Python 3 For Beginners
Over 15 hours of video content with guided instruction for beginners. Learn how to create real world applications and master the basics.